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ABSTRACT: Convection-allowing model ensemble guidance, such as that provided by the Warn-on-Forecast System

(WoFS), is designed to provide predictions of individual thunderstorm hazards within the next 0–6 h. TheWoFSweb viewer

provides a large suite of storm and environmental attribute products, but the applicability of these products to the National

Weather Service forecast process has not been objectively documented. Therefore, this study describes an experimental

forecasting task designed to investigatewhatWoFS products forecasters accessed and how they accessed them for a total of

26 cases (comprising 13weather events, eachworked by two forecasters). Analysis of web access log data revealed that, in all

26 cases, product accesses were dominated in the reflectivity, rotation, hail, and surface wind categories. However, the

number of different product types viewed and the number of transitions between products varied in each case. Therefore,

the Levenshtein (edit distance) method was used to compute similarity scores across all 26 cases, which helped to identify

what it meant for relatively similar versus dissimilar navigation of WoFS products. The Spearman’s rank correlation co-

efficient R results found that forecasters working the same weather event had higher similarity scores for events that

produced more tornado reports and for events in which forecasters had higher performance scores. The findings from this

study will influence subsequent efforts for further improving WoFS products and developing an efficient and effective user

interface for operational applications.

KEYWORDS: Atmosphere; Social Science; Ensembles; Forecasting; Forecasting techniques; Numerical weather

prediction/forecasting; Operational forecasting; Probability forecasts/models/distribution

1. Introduction

The process for forecasting and nowcasting convective

storms spans a timeline beginning days prior to storm occur-

rence and ending with real-time assessment of imminent or

ongoing hazardous weather. Along this timeline, numerical

weather prediction forecasts and observations provide essen-

tial information that guide the issuance of National Weather

Service (NWS) outlook, watch, and warning products. In re-

cent years, the development and operationalization of high-

resolution, convection-allowing models (CAMs) has enhanced

deterministic model guidance available for short-term thun-

derstorm prediction (Benjamin et al. 2019). Additionally, re-

search has been under way to explore CAM ensemble systems.

Unlike deterministic systems that provide a single forecast so-

lution, ensemble systems provide forecast uncertainty informa-

tion and thus give insight into the likelihood and potential

severity of severe weather occurrence. Effective visualization

of CAM ensemble uncertainty information is required if it is

to provide meaningful and useful guidance to forecasters.

New and innovative methods for postprocessing and visu-

alizing CAM ensemble guidance are necessary and are being

explored within the modeling community. In 2015, real-time

National Center for Atmospheric Research (NCAR) ensemble

guidance products were provided for public viewing on a

website. This website had notable impact and motivated the

continuation of NCAR’s project for several years. It brought

together members of the educational, research, and opera-

tional meteorological community to experience a year-round

demonstration of a real-time formally designed CAM ensem-

ble over the contiguous United States. Feedback from these

users was documented in an informal survey (Schwartz et al.

2019). Since then, the High Resolution Ensemble Forecast,

version 2 (HREFv2), system has become the first operational

CAM ensemble system. The HREFv2 employs spatial neigh-

borhood smoothing techniques in the postprocessing of its

output and uses a variety of visualizations to display products

(e.g., ‘‘paintball’’ plots, ensemble maximums, and ‘‘postage

stamps’’; Roberts et al. 2019).

How this type of CAM ensemble guidance might aid the

convective forecast process has been assessed through several

approaches, including survey tools, observations, and interviews

(e.g., Wilson et al. 2019a; Demuth et al. 2020). Additionally,

annual testing and evaluation of experimental CAM ensem-

bles has taken place in the National Oceanic and Atmospheric

Administration (NOAA) Hazardous Weather Testbed Spring

Forecasting Experiment (SFE) since 2007 (Clark et al. 2012,

2018, 2020a; Gallo et al. 2017). Participants attending the SFE

include scientists from academic and research institutions,

NWS forecasters, and graduate students. Each year, partici-

pants assess CAM ensembles to provide subjective ratings ofCorresponding author: Katie Wilson, katie.wilson@noaa.gov
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model output and to issue experimental outlooks. Feedback from

participants is then used to drive future model improvements.

One experimental CAM ensemble that has been a focus of

SFE activities in recent years is the Warn-on-Forecast System

(WoFS). Developed by the NOAA National Severe Storms

Laboratory (NSSL), WoFS is a convective-scale, frequently

cycled, 36-memberWRF-based ensemble analysis and forecast

system that provides probabilistic 18-member forecasts of in-

dividual storm hazards within the next 0–6 h (e.g., Stensrud

et al. 2009;Wheatley et al. 2015; Jones et al. 2016; Skinner et al.

2018; Yussouf et al. 2020). During the SFE, the WoFS domain

is centered over the region with the greatest severe weather

threat and covers a 900-km-square area with 3-km grid spacing.

The WoFS predictions cover the spatial and temporal scales

that span the typical NWS severe thunderstorm and tornado

watch and warning products. Given that current operational

CAM ensemble systems are not designed to provide frequent

guidance on this spatiotemporal scale, WoFS is expected to

provide forecasters with a more continuous flow of higher-

temporal-resolution probabilistic weather information and

be available with less latency than other CAM ensembles.

Therefore, WoFS guidance is expected to enhance situa-

tional awareness for next-hour convective activity and enable

enhanced communication of weather threats to NWS core

partners and the public (Rothfusz et al. 2018). However, for

WoFS to positively impact the forecast process, forecasters

must first be able to understand and interpret the guidance

correctly.

In an effort to establish a baseline of meteorologists’ current

understanding of storm-scale ensemble-based forecast guid-

ance, a survey of the 2017 SFE participants was issued to query

their interpretations of numerousWoFS graphics (Wilson et al.

2019b). Findings from this survey highlighted the types of

probability and percentile concepts that were understood

consistently across participants, as well as concepts that proved

more challenging. While training needs for using probabilistic

forecast guidance have already been noted in numerous re-

ports (e.g., NRC 2006; Novak et al. 2008), the findings from this

study were important for identifying training needs specific to

WoFS guidance. Since conducting this survey, the results have

been used to develop informal training for subsequent SFE

participants and collaborative NWS partners, with an end goal

to eventually produce an official WoFS training package.

Furthermore, these findings can be used to improve WoFS

products, such that visualizations are designed to aid inter-

pretation and understanding, especially for products that

proved to be particularly challenging.

While Wilson et al.’s (2019b) study was useful for identify-

ing meteorologists’ strengths and weaknesses in understanding

guidance from a specific CAM ensemble system, exploring

whether this type of guidance is what users need and want is

also critically important in the research and development

process of CAM ensemble systems. Demuth et al. (2020) re-

cently undertook a study to examine this topic. Using a mix of

observational and semistructured interview methods, Demuth

et al. (2020) collected information on NWS forecasters’ inter-

pretations of prototype CAM ensemble guidance products,

alongwith their specific information needs fromCAMensembles.

This user-centered approach is most ideal for ensuring that model

developers create information that meet the needs and wants

of operational forecasters, and it should be employed more

widely in the development of CAM ensemble guidance, in-

cluding that of WoFS guidance.

The availability of a large variety of WoFS products brings

to question what information users seek when interacting with

the WoFS web viewer during a forecasting task. Both subjec-

tive feedback and objective log data analysis are important for

learning about user web viewing behavior (Kuniavsky 2003;

Dumais et al. 2014). For example, assessments of users’

weather-related information seeking behaviors have shown to

be useful for learning about how to tailor information based

on Google search patterns of hurricane forecast information

(Sherman-Morris et al. 2011) and for improving message

suitability to support hurricane evacuation decision-making

(Cahyanto et al. 2016).

In prior SFE experiments, informal observation and feed-

back of participants’ use of WoFS products has provided some

sense of what information forecasters seek most frequently.

However, users’ experiences when interacting with the WoFS

web viewer were not logged, and thus forecasters’ interactive

behaviors over time were not objectively or accurately cap-

tured. Therefore, the study presented herein addresses this

research gap by providing a thorough documentation and as-

sessment of NWS forecasters’ WoFS product usage during a

designated experimental forecasting task. More specifically,

this study uses WoFS product access log data collected during

the 2019 SFE to examine the following research questions: 1)

What WoFS products are accessed and with what frequency?

2) What are forecasters’ WoFS product access patterns and

how do they compare to each other? 3) In what ways do

WoFS product access patterns relate to task performance and

event type?

Addressing these research questions is important for a va-

riety of reasons. First, while WoFS guidance is currently ex-

perimental, only a subset of products will be available once the

model is operationalized, and, as such, this subset should

contain the products that are most frequently used. Second, the

identification of effective approaches for examining WoFS

products will enable future users to apply WoFS guidance

in the ways that best support their forecast process. Third,

knowledge of how users access WoFS products will help to

guide the design of a user-friendly interface that is efficient

at delivering the information they want. Fourth, this study

demonstrates an interdisciplinary approach to exploring

user-focused research by bringing together concepts from

meteorology, model development, forecasting, and human

factors to examine questions that sit at the intersection of

research and operations. Thus, while this research is focused

on WoFS guidance, the data collection and analysis ap-

proaches described herein can be more broadly applied for

learning about forecasters’ use of other CAM ensembles as

well as different types of forecast information. Additionally,

the findings from this particular study will further our

knowledge on forecasters’ styles of data interrogation and

how those styles relate to product issuance decisions and

forecast performance.
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2. Methods

a. Participants

The annual NOAAHazardousWeather Testbed SFE brings

together the operations and research communities to test,

evaluate, and document advancements in experimental fore-

cast guidance, with a recent focus on convection-allowing en-

sembles (Gallo et al. 2017). Since 2017, this experiment has

included a 1-h, late-afternoon forecasting activity designed to

evaluate use of WoFS guidance. However, since convective

storms often initiate and develop into the evening hours, a 4-h

evening activity was conducted during the 2019 SFE to more

fully assess the potential operational utility of WoFS guidance

as convective events unfold (Clark et al. 2020a).

Two different NWS forecasters participated in the even-

ing activity during each of the five weeks of the 2019 SFE

(29 April–31 May 2019). The 10 participating forecasters each

represented a different local Weather Forecast Office and

consisted of 3 females and 7 males. The activity took place

Monday through Thursday [1200–2000 central daylight time

(CDT)], and each Friday participants provided feedback on

the experiment during an end-of-week discussion. This human-

subject study was approved under the University of Oklahoma

Institutional Review Board 5395. All participants provided

informed consent prior to their participation.

b. Procedure

All 10 NWS forecasters underwent a similar research pro-

tocol during their participation in this study. Each week, the

two participating forecasters were assigned a pseudonym of

either F1 or F2. Upon arrival each day, forecasters first

received a weather briefing from a retired Storm Prediction

Center (SPC) forecaster. On Mondays, forecasters met with

research scientists to build familiarity with what WoFS guid-

ance is, learn to use the WoFS web interface (Fig. 1a) and

product drawing tool, and discuss the experimental tasks that

would be completed during the evening activity. The two NWS

forecasters then joined all other SFE participants to 1) com-

plete an online training module focused on storm-scale en-

semble-based WoFS guidance concepts and 2) receive a brief

overview of the WoFS forecasting task.

The WoFS forecasting task included the issuance of three

probabilistic severe outlooks (i.e., to encompass the union of

severe hail, severe wind, and/or tornado threats). The first

outlook was valid for 1 h (short), the second was valid for 4 h

(long), and the third was valid for a targeted 1-h period (2000–

2100 CDT). These three outlooks were issued every hour, with

the first series issued during a regular SFE WoFS small group

activity during 1500–1600 CDT. Each NWS forecaster was

assigned to one of two groups to complete the first series of

outlooks jointly with other SFE participants (this task is not

included in the analysis). The evening activity then began at

1600 CDT, at which time the NWS forecasters continued to

issue the outlooks independently through 2000 CDT (Fig. 1b).

A research scientist was on hand each evening to supervise and

provide experimental support. However, during the Monday

evening activity, the supporting researcher found it helpful to

provide further discussion on aspects ofWoFS guidance and to

demonstrate the experimental product issuance task in real

time. Therefore, Monday’s evening activity is treated as a fa-

miliarization spinup to the experiment and is not included in

this study’s analysis.

Aweb-based drawing toolwas used to create the outlooks. This

tool allowed participants to draw contours with assigned prob-

abilities over available WoFS guidance products. Probabilities

were considered coverage probabilities, comparable to the

SPC’s forecasts of severe weather as occurring within ;40 km

(25 mi) of a point and for the duration of the outlook (i.e.,

either 1 or 4 h). All convective hazards (tornadoes, wind, and

hail) were grouped together, so probabilities indicated the

chance of any of the three hazards occurring within 25 mi of a

point. Forecasters could draw the same contour levels as found

in SPC outlooks for any type of severe hazard: 5%, 15%, 30%,

45%, and 60%. Prior outlooks were able to be loaded into the

web-based drawing tool and modified, allowing forecasters to

adjust previously issued products rather than draw entirely new

products each hour.

To document WoFS product usage during the evening ac-

tivity (which is the focus of this study), both NWS forecasters

were provided with their own dedicated web viewer. Each

hour (half hour) during the experiment, a 6-h (3 h) WoFS en-

semble forecast was initialized and displayed on the web

viewers. The NWS forecasters used these WoFS updates to

assess storm development and inform outlook issuance each

hour. Additionally, they freely viewed web-based observations

(e.g., radar, satellite, and SPC mesoanalysis) to maintain situ-

ational awareness and to evaluate WoFS performance in

real time.

c. Data and analysis

The data analyzed in this study were collected over 13 ex-

periment days (totaling 26 cases because of two forecasters’

participation each week, F1 and F2) during the 5-week 2019

SFE. Reference to individual cases in the results will follow a

format of month, day, and forecaster for example, May22F1.

Eleven days of the 2019 SFE were excluded from this analysis

because of Monday’s evening activity being treated as a fa-

miliarization spinup, no evening activity being held on Fridays,

and WoFS availability issues that occurred on several experi-

ment days. The data collected during the forecast task include

the WoFS product access logs and experimental outlooks. A

description of these datasets and the methods used to analyze

them follows.

1) WOFS ACCESS LOGS

The NOAA NSSL access logs were obtained for the two

WoFS websites created for F1 and F2’s use. Although the

forecast task began at 1600 CDT, oftentimes there was a brief

overlap as the two NWS forecasters transitioned from the

group SFE activity to the independent evening activity. Therefore,

to remove F1’s and F2’s WoFS use during this brief overlap,

data analyzed included access logs from 1615 CDT onward.

Product information was extracted from the access logs to

reveal the name of the WoFS products accessed by F1 or F2.

While timestamp information was also documented in the ac-

cess logs, it did not accurately reflect the duration for which
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FIG. 1. Examples of (a) the WoFS web viewer interface (with a UH probability-of-

exceedance product plotted for the 22 May 2019 event) and (b) a forecasters’ experimental

outlooks issued for the same event.
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F1 or F2 paid attention to a product (e.g., they may leave a

product open while attending to another data source). Although

duration is not considered in this analysis, the order in which F1

or F2 accessed products represents a temporal component to

product accesses and is considered an important part of this

analysis.

Although most WoFS products were reliably available

throughout the evening activity, the products designed to

provide verification were frequently intermittent or unavail-

able. Therefore, all visits to verification-related products were

removed from the access logs. Additionally, the member viewer

consists of simulated composite reflectivity guidance for each

of the 18 WoFS ensemble members. To prompt the display of

this guidance, forecasters would typically need to click back

and forth between the members. However, given that each of

the 18 members was treated as a separate product in the access

logs, forecasters’ viewing behavior of the member viewer was

exaggerated. Therefore, to more accurately represent fore-

casters’ visits to themember viewer, the 18 individual members

were collapsed to represent a single product.

A total of 131 WoFS products were accessed over the 26

cases included in this analysis (after removing access attempts

to verification products). While summary statistics are pro-

vided at this granular level for all 10 NWS forecasters’ WoFS

product use, product categorization was subsequently applied

during the analysis process. The groupings were based on me-

teorological information and on the design of the WoFS web

viewer (all products can be viewed at https://wof.nssl.noaa.gov/

retro/). Groups were defined by 15 categories: reflectivity (n 5
20 products), hail (n 5 31), rotation (n 5 35), vertical motion

(n5 5), surface wind (n5 19), member viewer (n5 1), satellite

(n5 3), quantitative precipitation forecasts (qpf; n5 3), mixed-

layer convective available potential energy (mlcape; n 5 2),

mixed-layer convective inhibition (mlcin; n 5 1), storm motion

(n5 1), vertical wind shear (n5 2), storm relative helicity (srh;

n 5 2), significant tornado parameter (stp; n 5 1), and temper-

ature (n 5 5).

Bulk analysis of category visits per case was first conducted,

but the notable advantage of grouping products into one of

15 categories was that it more easily enabled a comparison of

WoFS product usage patterns across the 26 cases. This com-

parison was intended to extend our understanding beyond

knowing what product categories are most used to knowing

how forecasters extract WoFS guidance information. To per-

form a comparison of forecasters’ WoFS guidance use, the

access log information was converted into a string of letters,

with each letter representing a specific product category that

was accessed. The extent of similarity between forecasters’

accesses to product categories (with order of accesses main-

tained) was computed for all possible case comparisons using

the Levenshtein distance algorithm available in the R software

package (Van der Loo 2014).

Also known as edit distance, the Levenshtein distance

computes the shortest possible string distance between two

character vectors (Fig. 2). Edits to a string can be made by

inserting, deleting, or substituting a character. The number of

edits required to transform one string into another is counted.

The similarity score of two strings is then calculated as the

difference between the longest string length and the number of

edits, which is then divided by the longest string length. The

similarity score ranges between values of 0 and 1, with 1 indi-

cating an exact match between two strings, and decreasing

values indicating decreasing similarity.

The number of products visited for each of the 26 cases

varied, and thus two strings of different lengths are used to

calculate the similarity score. The default Levenshtein distance

FIG. 2. A schematic detailing the Levenshtein (edit distance) moving-window approach, including the letters assigned to each product

category and an example of the similarity score computation for strings representative of May01F1’s and May01F2’s WoFS product use.
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in R handles string length differences by recycling the shorter

string until it is the length of the longer string. However, this

approach misrepresents forecasters’ product viewing behav-

iors by artificially inserting product category visits. Truncating

the longer string to the length of the shorter string was explored

as an alternative solution, but this approach was still limited

because it did not fully encompass all forecasters’ product

viewing behavior. Therefore, for each case comparison, the

shorter string was compared with a moving truncated window

of the longer string. Similarity scores were computed for every

possible iteration of the string comparison, and the final simi-

larity score was taken as the average from all of the iterations.

This approach supported a complete comparison of the en-

tirety of two strings and was used to quantify the degree of

similarity for WoFS product usage between all 26 cases.

2) EXPERIMENTAL OUTLOOKS

Participants were able to save their outlook multiple times

throughout the forecast generation process, resulting in 378

total outlooks collected during the 13 experiment days. Only

the latest outlook issued for each type and hour was retained

for verification, under the assumption that the final outlook

issued prior to the deadline was the most representative of the

forecasters’ thinking. This left a dataset of 11 outlooks per

forecaster per day to examine, or 286 outlooks. Outlooks were

stored at NSSL in Geo JavaScript Object Notation (GeoJSON)

format and gridded to the WoFS domain prior to objective

verification. No interpolation was performed between the

contours, maintaining the stepwise nature of the probabilities.

Outlooks were evaluated using two types of objective veri-

fication metrics: area under the receiver operating character-

istic (ROC) curve (ROCa; Mason 1982) and a probabilistic

version of the fractions skill score (FSS; Roberts and Lean

2008). The FSS was calculated using a binary observation field

following Roberts et al. (2020), and similar to the approach of

Schwartz et al. (2010). Specifically, the FSS calculated here is

closer to a Brier skill score (Brier 1950), but with a reference

forecast that reflects the worst possible forecast that could be

made with a given set of fractional values in the forecast

probabilities and observed binary fields. This calculation fre-

quently results in lower values of FSS relative to the original

FSS formulation but avoids the issue of conflating the neigh-

borhood and smoothing length scales pointed out by Schwartz

and Sobash (2017) by not smoothing the observations. Thus,

this calculation is essentially a neighborhood maximum en-

semble probability–based FSS.

To perform the verification, filtered local storm reports

(LSRs) from the SPC were regridded to the WoFS domain,

and expanded such that all points within 25 mi of a report was

considered a ‘‘hit.’’ The ROC area scores range from 0.5,

indicating that a forecast has the same skill as a random

forecast, to 1.0, indicating a perfect forecast. An FSS of 1.0

also indicates a perfect forecast but has a lower limit of 0.0.

To assess performance across the full period of the experi-

ment, these statistics were then aggregated across the 11

forecasts produced by each forecaster on each day and in-

cluded forecasts and observations valid over both 1- and 4-h

time periods.

The Spearman’s rank correlation coefficient R and correspond-

ing significance value was used to examine the relationship(s)

between the aggregated performance results, types of hazards

produced during an event, and forecasters’ WoFS product

usage. The Spearman’s rank correlation coefficient ranges

from21 to11, and values indicate the strength of a monotonic

relationship between two variables (Stowell 2014). This non-

parametric measure was chosen since the Shapiro–Wilks nor-

mality test found that many of the datasets used in this analysis

are nonnormally distributed.

3. Results

a. Product accesses

To understand overall WoFS product use, forecasters’ total

product accesses were reviewed. Together, the 10 NWS fore-

casters accessed a total of 131WoFS products. However, not all

of these products were accessed in all of the 26 cases included

in this analysis. Over one-half of the logged products were

accessed in fewer than four cases, while only six of the recorded

products were accessed in more than one-half of the cases

(Fig. 3). This result suggests that although the NWS forecasters

had access to a large array of products, only a small subset of

them were consistently accessed during the experiment. The

most consistently accessed WoFS products across the 26 cases

were the reflectivity paintball plot (24 cases), ensemble mean

mlcape (24 cases), and 2–5-km updraft helicity (UH) paintball

plot (17 cases). Additionally, three versions of the 2–5 km-UH

probability products (9-km neighborhood radius at 5-min

and 1-h intervals, and 15-km neighborhood radius at a 1-h

interval) and the 90th-percentile surface wind value were ac-

cessed in more than one-half of the cases (16, 15, and 17 cases,

respectively).

FIG. 3. Histogram depicting the number of WoFS products ac-

cessed per bin of number of cases (e.g., the 0–4 bin interval includes

up to 3 cases, and the 4–8 bin interval includes 4–7 cases).
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To further understand WoFS product access behavior, the

number of individual products accessed (i.e., product type

count) and the number of transitions between products (i.e.,

product accesses) was considered on a per-case basis (Fig. 4).

On average, forecasters accessed 29 (standard deviation 5 9,

minimum 5 11, and maximum 5 43) different products per

case, with a total of 76 (standard deviation5 25, minimum5 35,

and maximum 5 121) product accesses. In general, those who

accessed fewer types of products also made fewer transitions

between products. However, there were instances in which

participants made a relatively high number of product transi-

tions in comparison with the number of product types they

accessed (e.g., May14F2 andMay22F1). In contrast, there were

also instances in which a relatively low number of product

transitions were made in comparison with the number of

product types accessed (e.g., May14F1 and May30F2). This

finding suggests different styles for viewing WoFS guidance,

with varying degrees of exploration across the WoFS web

viewer and varying rates at which forecasters sought new in-

formation by transitioning from one product type to another.

b. Product categories

In totality, the distribution of accesses to the 15 product

categories across the whole experiment shows that the reflec-

tivity and rotation categories were accessed in all of the 26

cases and each accounted for, on average, 30% of the total

product category accesses within a case (Fig. 5). The next most

accessed product categories were hail and surface wind, each

accounting for an average of 10% of the total product category

accesses within a case (Fig. 5). Given the higher number of

individual products included in each of these categories than in

the other categories, this result demonstrates that forecasters

spent more time viewing and extracting information from the

many products presented within these particular categories.

However, we did not find that the number of products within a

category was proportional to the average number of category

accesses. The remaining categories accounted for very little

of the total accesses made to product categories in this exper-

iment (Fig. 5).

The specific products accessed for each of these four main

product categories were examined next. For the reflectivity

category, the reflectivity paintball plot was overwhelmingly

most popular. Forecasters also tended to access the probability-

of-exceedance products more often than percentile products,

along with 5-min output produced using the smaller neigh-

borhoods. For rotation, the 2–5-km UH paintball plot was

accessed much more often than any other rotation product.

Forecasters accessed the hourly interval products more so in

this category than in others and used the 2–5-km UH products

more frequently than the 0–2-km UH products. This finding

may be due to a focus on midlevel UH in the early literature

that first explored applications of UH for diagnosing severe

weather threats and to the ongoing demonstrations of its use-

fulness for forecasting applications (e.g., Kain et al. 2008; Sobash

et al. 2011). Unlike in the reflectivity and rotation categories, the

90th-percentile and maximum products were more popular

in the hail and surface wind categories than the probability

threshold products. This preference is likely due to forecasters

using this information to directly quantify the potential severity

of these convective hazards.

FIG. 4. The total product type count (bars) and product accesses

(black dots) for all 26 cases, with vertical red dashed lines sepa-

rating experiment weeks and the corresponding changeover in F1

(gray) and F2 (teal) participants.

FIG. 5. The distribution of access proportions (%) per case for all

15 product categories. The thick line in the box indicates the me-

dian value, and the ends of the box represent the interquartile

range (25th–75th percentile). The whiskers extend up to 1.5 times

the lower (25th percentile) and upper (75th percentile) quartiles,

and outliers are given by the open circles.
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While a review of the product categories accessed from the

whole experiment provides an overall sense for what type

of guidance was sought most, analyzing product categories

accessed on a per-case basis is important for identifying WoFS

product usage as it relates to individual forecasters and specific

weather hazards. As indicated in the distributions of product

category access proportions (Fig. 5), the product categories

accessed in each case are typically dominated by the re-

flectivity, rotation, hail, and surface wind categories (Fig. 6).

However, the visualization of case-by-case product category

access reveals that product category preference also varied

(e.g., May15F1 and May15F2; Fig. 6). This result suggests that

it is possible that there were different approaches to how

forecasters extracted information during the forecasting task,

even for cases where the dominant product categories were the

same. Therefore, the order (or pattern) in which the product

categories were accessed is considered next. This analysis

builds on the investigation of what product categories were

accessed by considering how forecasters accessed them.

c. Product category access patterns

The order in whichWoFS products were accessed during the

forecasting task matters because it is representative of fore-

casters’ information seeking behaviors and related processes as

events unfolded. Even if forecasters viewed similar products,

they may have accessed the information differently during the

forecasting task. A comparison of the product access patterns

helps to highlight similarities and differences in the ways

forecasters extracted information, and thus gives insight into

the variety of forecast styles and approaches adopted in this

forecasting task.

Similarity scores were computed for all possible case com-

parisons using the Levenshtein (edit distance) algorithm as

described in section 2c(1). Removing same-case comparisons,

the distribution of similarity scores ranged from 0.16 to 0.49,

with a median value of 0.33 (Figs. 7 and 8). To contextualize

these similarity scores to forecasters’ information seeking

behaviors, examples of the cases resulting in maximum, me-

dian, and minimum similarity scores are reviewed.

In the maximum similarity score (0.49) example, May16F2

and May21F1 product accesses were predominantly in the

reflectivity and rotation categories, with a small proportion of

accesses mostly in the hail, surface wind, andmlcape categories

(Fig. 9a). The time series of products accessed shows that

May16F2 and May21F1 frequently transitioned between prod-

ucts within the rotation category (Fig. 10a). In both cases,

transitions between the rotation and reflectivity categories

were also made. A difference is that while May16F2 also

transitioned from the rotation to mlcape category, May21F1

FIG. 6. The proportion (%) of each product category accessed

per case relative to the total number of product category accesses

for that same case.

FIG. 7. The distribution of all similarity scores. The boxplot de-

scription is as in Fig. 5.

FIG. 8. Similarity scores of product category access patterns for

all possible 26 case comparisons. Higher values represent greater

similarity between product category access patterns. The similarity

scores for same-case comparisons are removed from the analysis,

as represented by the gray diagonal line. Maximum, median, and

minimum similarity scores are shown in the green, orange, and red

boxes and correspond to the examples shared in Fig. 10, below.
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instead transitioned from the rotation to surface wind category

(Fig. 10a). However, these transitions were much less frequent

than the other more dominant product category accesses.

Two cases representing the median similarity score (0.33)

are May1F1 and May1F2 (Fig. 9b). Both forecasters were

working the same weather event on this day. The proportion of

accesses made to the reflectivity, hail, rotation, surface wind,

and mlcape categories is strikingly similar. Therefore, in to-

tality, both forecasters extracted similar types of information.

However, with a greater variety of product categories accessed

in this case than in the maximum similarity score example,

there is also greater variation in how May1F1 and May1F2

extracted the WoFS product information (Fig. 10b).

In the minimum similarity score (0.16) example, the product

categories accessed are drastically different between cases

(Fig. 9c). Whereas May16F1’s accesses are dominated by the

reflectivity and hail categories, May21F1’s accesses are largely

dominated by the rotation category. Both May16F1 and

May21F1 visit other categories but at a much lower rate than

their dominant categories. The lack of similarity between these

two cases is evident in the time series of product accesses, such

that May16F1 typically transitioned from the reflectivity to the

hail categories, as well as to other categories including the

member viewer and surface wind (Fig. 10c). In contrast,May21F1

transitioned within the rotation category often, as well as from

rotation to surface wind categories (Fig. 10c).

The minimum and maximum similarity score examples

demonstrate two extremes of product category access pattern

comparisons in this experiment. However, the median simi-

larity score example is more representative of the extent to

which forecasters’ information seeking behavior overlapped.

This example shows that even when forecasters predominantly

access the same product categories with similar proportions,

there can still be notable variety in how they transition between

products. While lengthy matches in product category transi-

tions were not evident in the median similarity score example

shared, there were some shorter recurring transitions in both

forecasters’ product accesses. The following analysis looks to

identify these types of patterns in all 26 cases.

d. Common transition patterns

The analysis of transitions between products belonging to

the most popular categories is constrained to those ac-

counting for an average of at least 10% of participants’ total

product accesses. As discussed in section 2b, these categories

include reflectivity, rotation, hail, and surface wind. All

possible patterns of transitions between products using two

(e.g., reflectivity to rotation; n 5 16), three (e.g., reflectivity to

rotation to hail; n5 64), or four (e.g., reflectivity to rotation to

hail to reflectivity; n 5 256) permutations of these product

categories was investigated, and recurring patterns (i.e., oc-

curringmore than once within a case) were identified in each of

the 26 cases.

Eight transition patterns were found to recur across the 26

cases (Fig. 11). These patterns consisted mostly of transitions

between two products, and no recurring transition patterns of

four products were identified. Most commonly, forecasters

transitioned from products within the reflectivity category to

those within the rotation category. The next most common

types of product transitions were from the rotation category

to the reflectivity category, and then within the reflectivity

category itself (Fig. 11). Recurring transition patterns of three

products were found between the reflectivity and rotation

categories also, although their rates of occurrence were gen-

erally lower. The remaining three transition patterns also

had lower rates of occurrence, but they captured forecasters’

FIG. 9. As in Fig. 6, but with cases highlighted to demonstrate the product category access pattern comparisons resulting in (a) maximum,

(b) median, and (c) minimum similarity scores. The highlighted cases follow the order indicated in the labels above each image.
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repeated conjoined use of rotation and reflectivity guidance

with hail and surface wind guidance (Fig. 11).

Of the eight transition patterns plotted, only the first pat-

tern (reflectivity to rotation) was identified in all 26 cases.

Therefore, forecasters generally did not make the same types

of product transitions. Furthermore, while the median values

of pattern counts were relatively modest, outlier data points

highlight cases in which transition patterns were frequently

used. To explore the frequency of the eight transition patterns

in each of the 26 cases, the individual data points were plotted

in Fig. 12. In most experiment weeks, the pattern counts fell to

values predominantly below 10. However, in some cases, and

especially during week four, pattern counts spread to higher

values, meaning that these forecasters accessed WoFS prod-

ucts in the same order more often. These higher pattern counts

occurred mostly for the reflectivity to rotation, rotation to ro-

tation, and rotation to reflectivity category transitions, and are

generally associated with cases in which forecasters accessed a

relatively high number of products (i.e., exceeding 100 transi-

tions; Fig. 4).

e. Product usage relative to performance and hazard type

The analysis in sections 3a–3d describes what WoFS prod-

ucts forecasters viewed, at what frequency, and in what order

while completing an experimental forecasting task. A final step

in the analysis relates the product usage findings to forecasters’

FIG. 10. Time series of product category accesses for case comparisons resulting in

(a) maximum, (b) median, and (c) minimum similarity scores.
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performance during the experimental task and the type of

weather hazards produced in each event.

The FSS and ROCa was computed for each of the 26 cases,

over all forecasts issued for that day by each forecaster. FSS

values ranged from 0.03 to 0.51 and the ROCa values ranged

from 0.59 to 0.97 (Fig. 13). In general, forecasters’ performance

results were similar for those working the same day. Of the

13 events, the number of tornado, hail, and wind LSRs varied

such that 8 produced tornadoes, 12 produced severe wind, and

all produced severe hail (Fig. 14).

How forecasters’ performance related to the type of hazards

produced during an event, and how both performance and

event hazards related to forecasters’ WoFS product usage, was

investigated using the Spearman’s rank correlation coefficient

R and corresponding significance value. In total, 91 correlations

were computed. These correlations were computed between all

performance measures (including FSS, ROCa, and median FSS

and ROCa values for the same event), tornado/hail/wind LSR

counts, and the product usage analysis {including number of

product types viewed; total product accesses; number of visits

FIG. 11. The distribution of eight product category transition patterns for the 26 cases. The

boxplot description is as in Fig. 5.

FIG. 12. Pattern counts for eight product category transitions plotted for all cases. Vertical red

dashed lines separate the five experiment weeks.
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to each of the 15 product categories; same-event similarity

scores [see Fig. 1 and section 2c(1) for details on similarity

scores]; and number of occurrences for each of the identified

eight product transition patterns}.

Of the 91 correlations computed, 8 statistically significant

moderate or strong positive associations were found (i.e.,

moderate R $ 60.5, strong R $ 60.7, and p value , 0.05;

Hinkle et al. 2003). Of these eight associations, three moderate

relationships were found between performance and event type

(Figs. 15a–c). Specifically, there was a positive relationship

between FSS and the number of tornado and severe hail

LSRs, as well as between ROCa and the number of severe

hail LSRs. It is possible that this relationship is a result of

weather events producing a higher number of storm reports

being more predictable, such that their environments were

more conducive to producing severe weather. A moderate

relationship was also established between the number of

tornado LSRs and number of visits to products in both the

SRH and temperature categories (Figs. 15d,e). The temper-

ature category primarily included visits to the 2-m tempera-

ture and 2-m dewpoint products. The only strong relationship

identified in the correlation calculations was between the

same-event similarity scores and the number of tornado

LSRs, meaning that participants had more similar WoFS

product analysis patterns for events that produced more

tornadoes (Fig. 15f). Two moderate relationships with the

same-event similarity score were also discovered. These re-

lationships were with the same-event median FSS andmedian

ROCa values, meaning that forecasters with more similar

WoFS product analysis patterns also had higher degrees of

performance during an event (Figs. 15g,h). Of the remaining

variable correlations, the Spearman’s rank correlation coeffi-

cients were weak (R , 60.5) and had almost entirely corre-

sponding insignificant p values.

4. Discussion, limitations, and future work

The results presented in this study highlight what WoFS

products forecasters used and the extent of similarity in

forecasters’ navigation of those WoFS products during an

experimental forecasting task. Although 131 WoFS prod-

ucts were accessed at some point during the 26 cases, less

than half of these products were accessed somewhat con-

sistently across the different cases. Furthermore, forecasters

varied in the number of different types of products viewed

per case and the number of times they transitioned from one

product to another. Despite differences in these bulk mea-

sures, when products were grouped by category, a uniform

finding across the 26 cases was that the majority of products

viewed were in the reflectivity, rotation, hail, and surface

wind categories. This finding was not surprising since these

products directly relate to a severe weather forecasting task.

Exploring these categories further, eight common transi-

tion patterns emerged, with the reflectivity to rotation

transition pattern occurring in all 26 cases. These findings

can help inform numerous future development and im-

plementation strategies for WoFS guidance use in NWS

operations. For example, this research helps to identify

products that should be prioritized for use in severe weather

forecasting, as well as ways in which products can be further

improved to meet the needs of NWS forecasters. Products

could be developed such that information available in cur-

rently separate products but concurrently viewed are inte-

grated into one single visualization. Prior efforts to plot

UH with composite reflectivity in the NCAR and HREF

ensemble member viewers provide examples of ways to

combine product information. Additionally, these findings

can help guide user interface design such that products are

organized in a manner that supports efficient transition

between products.

The similarity score findings showed examples of what it

means for forecasters to have relatively high, median, or low

similarity in their accessing behavior of WoFS products in

comparison with their forecaster counterpart for the same

event, and these analyses highlight two important findings.

First, same-event similarity scores were found to have signifi-

cant moderate or strong relationships with the number of

FIG. 13. The fractions skill score (red circles) and ROCa (blue

squares) values for all 26 cases. Vertical dashed lines separate ex-

periment weeks.

FIG. 14. The tornado (red circle), hail (green triangle), and wind

(blue square) LSR counts for each of the 13 events.
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tornado LSRs and with performance (FSS and ROCa values).

It is possible that the more similar viewing pattern of WoFS

products in these two instances is a result of forecasters

working events that are inherently less uncertain and easier to

predict, thus driving a more predictable pattern of information

seeking. The significant moderate correlation between per-

formance and tornado LSRs supports this explanation, such

that the more notable events were better, and perhaps more

easily, forecast. However, since we did not collect data on

forecasters’ expectations for event hazards, we cannot confirm

if forecasters’ expectations influenced theirWoFS product use.

Future research should include questions to examine this

aspect of information-seeking behavior. Second, most of this

study’s other WoFS product use analyses had an insignificant

weak association with forecasters’ performance and event

hazard type. This finding is important because it suggests that

FIG. 15. Scatterplots of variables with a moderate or strong monotonic relationship as determined by Spearman’s

rank correlation coefficients R and their corresponding p values.
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there are numerous approaches to viewing the WoFS prod-

ucts, and these approaches do not necessarily relate to fore-

cast performance or to the number of severe hail or wind

LSRs produced in a given event. Likewise, this finding sug-

gests that how forecasters accessed the WoFS products had

less of an impact on forecast skill than the nature of the

event itself did. However, there are limitations in using just

LSRs to characterize the meteorological conditions, and it is

therefore possible that an analysis of other measures of storm

mode and predictability with WoFS product use may detect

additional relationships between forecaster behavior and

weather events.

While this study reports on findings to help guide future

developments and operationalization of WoFS guidance, here

we review them with the study’s limitations in mind. First, the

findings are a function of the experimental forecast task con-

ducted with only 10 NWS forecasters and for a relatively small

sample of weather events. It is possible that for either a dif-

ferent forecast task or for a task tested with many more fore-

casters over many more events, we may learn something new

about what products are important to forecasters or how their

navigation strategies compare. Second, the experimental

forecast task was focused on total severe weather hazards

(i.e., severe hail, severe wind, and/or tornadoes). It is there-

fore difficult to separate out WoFS product use for these in-

dividual hazards. However, the SFE is beginning to explore

issuing experimental forecast products for individual severe

weather hazards (Clark et al. 2020b); a natural extension of

this work would therefore be to examine participants’ WoFS

product use in these subsequent experiments. Additionally,

the focus on severe weather hazards means that these results

are not applicable to other hazards, such as flash flooding. A

result of the severe hazard focus, for example, was that fore-

casters barely accessed the quantitative precipitation forecast

products during this experiment. Future work should collect

access log data for other user groups and compareWoFS product

use across a more varied spectrum of forecast challenges.

Last, in the interest of providing a suitable degree of eco-

logical validity, this study took an exploratory approach and

therefore did not constrain forecasters’ access to other types

of guidance during the experiment nor were forecasters’ in-

teractions with one another prevented. While this approach

promoted an environment that is more similar to forecasters’

operational experiences, it introduced confounding variables

that are difficult to measure the impact of. Confounding

variables include the extent to which forecasters depended

on other sources of guidance (e.g., real-time radar and sat-

ellite imagery and SPC mesoanalysis), the influence of the

experimental forecasts drawn in a group activity that pre-

ceded this experiment each day, and the influence of fore-

casters’ interactions on theirWoFS product use and forecast

performance. Future research should incorporate questions

to assess how forecasters are weighting different pieces of

information alongside their use of WoFS guidance, as well

as how they are weighting the initial consensus outlooks

formed during group activities. Furthermore, increased

data collection on topics like forecast expectation prior to

working an event would help to provide insight on how

forecasters’ initial conceptual models impact downstream

WoFS product use.

5. Conclusions

This study presented a first objective analysis of forecasters’

WoFS product use for an experimental forecasting task. The

analysis ofWoFSweb viewer access log data enabled the types,

frequency, and transition between WoFS products accessed to

be investigated. Additionally, forecasters’ patterns of WoFS

product use were assessed using a string similarity scoring

method. This method demonstrated an approach for capturing,

quantifying, and comparing forecasters’ information seeking

behavior, and highlighted instances when forecasters’ use of

theWoFS web viewer was very similar and very dissimilar. The

analyses of forecasters WoFS product use were assessed for

their association to forecast performance and event LSR rec-

ords using the Spearman’s rank correlation coefficient. This

assessment showed that forecasters working the same event

had more similar WoFS product use for events that produced

more tornado LSRs, and for events that they had forecast

better. These results suggest that greater diversity in WoFS

product use behavior may be expected for events producing

less tornado activity and for events that are more difficult to

forecast. However, despite the overall lower performance in

some of these cases, the findings suggest that there are multiple

paths for navigating WoFS guidance products that lead to

forecasts of similar skill. This topic should be further explored

in future experimentation that would increase the sample size

of participants, allow for an assessment of WoFS product use

for individual hazard forecasts, and more tightly constrain or

measure access to and influence of other weather information.

The findings from this study will directly influence subse-

quent efforts for further developing and improving WoFS

products for severe weather forecasting. For example, this

study provides insight that guides the prioritization of WoFS

products for further development (e.g., combining information

from multiple products, such as information depicted in the

frequently accessed probability swath and paintball plot products)

and operational implementation (e.g., into the AdvancedWeather

Interactive Processing System 2). This study also provides a

foundation for further exploring, quantifying, and comparing

WoFS product use for other forecast challenges (e.g., flash

flooding events and mixed rainfall/severe weather threat

events such as hurricanes). Through these research efforts, we

hope to provide operational WoFS guidance in a manner that

maximizes its friendly, efficient, and effective use, thus sup-

porting and enhancing the forecast decision-making processes

of NWS forecasters across the United States.
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